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Abstract A basic predator-prey (Lotka-Volterra) system exhibits marginal stability on the
deterministic level. Intrinsic demographic stochasticity destroys this stability and drives the
system toward extinction of one or both species. We analytically calculate the mean extinc-
tion time of such a system and investigate its scaling with the system’s parameters. This
mean extinction time, measured in number of population cycles, scales as the square root
of the size of the smaller population and as the minus three halves power of the size of the
larger population. The analytic results are fully confirmed by Monte-Carlo simulations.

Keywords Lotka-Volterra · Extinction · Individual-based modeling

1 Introduction

One of the fundamental problems studied in population dynamics is the predator-prey model
first introduced by Lotka [1] and Volterra [2]. Such a system consists of two species where
one propagates itself by consuming the other. A deterministic population-based modeling
of the system results in stable oscillations in the two population sizes. The system can be
more accurately represented using an individual-based modeling. In this type of modeling,
the populations are taken to be strictly discrete and individual birth/death events occur sto-
chastically. This individual-based modeling inevitably forces the system to extinction by
these stochastic fluctuations. Since this is considered ecologically infeasible, many authors
have investigated models which stabilize or destabilize this system through the inclusion of
density-dependent effects [3, 4]. Such effects change a species’ per capita growth rate as the
population size changes. For example, modifying the model to include an increasing fitness
of the species with population density (Allee effect) may destabilize a predator-prey sys-
tem [5]. More complex predator-prey systems can also create a stability. The introduction of
protected prey refuges may prevent prey extinction [6]. Introducing a weakening parasitic
infection in the prey species can allow for predator persistence [7]. Additional stabilization

M. Parker (�) · A. Kamenev
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
e-mail: park0523@umn.edu

mailto:park0523@umn.edu


202 M. Parker, A. Kamenev

can arise from spatial heterogeneity in the system. These spatial variations can arise from the
intrinsic stochasticity of an individual-based modeling [8] or from external enforcement [9].

It is our intent to better understand the density-independent system by calculating the
mean extinction time under varying reaction conditions. This extinction time varies widely
for finite systems. In fact, it is possible to construct “small” systems which persist much
longer than systems which have much larger characteristic population sizes. Although all
such systems are destined for extinction, additional persistence time provided under certain
conditions could prove biologically important when combined with other effects such as the
ones discussed previously.

A key feature of the Lotka-Volterra model is an integral of the mean-field motion which
makes the mean-field trajectories neutrally stable [10]. Fluctuations are then neither ampli-
fied or damped, and thus large deviations from the mean-field results, such as extinctions,
can be the result of many small step fluctuations. These small fluctuations are the result of
the intrinsic demographic stochasticity of the model and result in extinction times that ex-
hibit power law dependence on the population sizes. In contrast, in systems with stable limit
cycles, extinction times are exponentially long.

The characteristic size of the populations can be defined as their value at the mean-field
coexistence fixed point. The central finding of this paper is that the number of oscillations, C,
for a system starting at this coexistence fixed point before the system goes extinct scales as

C ∝ N
3/2

S × N
−1/2

L , (1)

where NL > NS are the characteristic sizes of the larger and smaller populations respec-
tively. This is a surprising result that implies, for example, that as the characteristic size of
the larger population increases the system goes extinct more quickly. Further, systems that
have widely differing parameters can behave virtually identically with respect to extinction
time so long as the typical number of cycles, C, is the same in both systems.

This result is in agreement with previous work analyzing the scaling of this system in the
long and short time limits [11]. In that work, a method of averaging stochastic fluctuations
around a mean-field orbit was used to reduce the system to one dimension. The relative
extinction time was calculated in very short-lived systems using a semi-classical analysis.
An eigenvalue calculation was used for long-lived systems. In this paper, we extend this
work by calculating a more directly measured quantity, the mean extinction time, that in-
corporates all Monte-Carlo trials both long and short-lived. In addition, simulations here are
done using the Gillespie algorithm which is faster and more accurate than the discrete time
Monte-Carlo simulations done previously.

We present here an analytic treatment of the Lotka-Volterra system using a Fokker-Planck
approximation. Using an inherent separation of time scales, this two-dimensional equation
can be reduced to one dimension. This equation is equivalent to diffusion over a finite in-
terval in a specific potential. A similar averaging procedure in a Langevin formulation has
recently been investigated in [12]. We then solve for the mean first passage time of this
one-dimensional problem.

In Sect. 2, we review the results of a mean-field treatment of the model. Results of
Monte-Carlo simulations of an individual-based model are presented in Sect. 3. An ana-
lytic approach to the calculation of the mean-extinction time is presented in Sect. 4. Finally,
the results are discussed in Sect. 5.
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2 Mean Field Theory

The basic predator-prey system consists of two populations. The prey reproduce at rate μ,
and the predators die at rate σ . There is a third reaction in which a predator consumes one
of the prey population at rate λ to reproduce. These three reactions can be summarized as

F
σ→ 0; R

μ→ 2R; F + R
λ→ 2F, (2)

where F signifies a predator (“fox”) and R signifies a prey individual (“rabbit”).
In a mean-field modeling, the two populations are taken to be continuous and the system’s

evolution is governed by deterministic differential equations. If q1 represents the predator
population and q2 represents the prey population these equations are

q̇1 = −σq1 + λq1q2,

q̇2 = μq2 − λq1q2.
(3)

There are three stable states in this system. These being (q1, q2) = (0,0), (0,∞), and
(μ/λ,σ/λ). The first corresponds to the trivial case of extinction of both species. The sec-
ond is an absorbing state where the predators are extinct and the prey population is growing
exponentially. Finally, the third is a coexistence fixed point, where the stable populations of
the predator and prey are N1 = μ/λ and N2 = σ/λ.

These mean-field equations of motion (3) have an integral of motion:

G = λq1 − μ − μ ln (q1λ/μ) + λq2 − σ − σ ln (q2λ/σ). (4)

The result of this constant is that the mean-field evolution of the system in predator-prey
space for a given set of initial conditions is a closed orbit. In fact, the presence of this integral
makes all of these closed orbits marginally stable. Fluctuations may push the system between
neighboring orbits, but there is neither an opposing or restoring force to these fluctuations.
The definition of G is chosen so that at the mean-field fixed point (far from extinction) G = 0

Fig. 1 Orbits of constant
G = (0.01,0.1,0.5,1,2,3,4) in
units of

√
σμ. The evolution

proceeds clockwise around the
mean-field fixed point of
N1 = N2 = 100
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and for large cycles that closely approach the two axes, G → ∞. This makes G a natural
radial coordinate. Figure 1 presents orbits for various values of the integral of motion, G,
for the case N1 = N2 = 100. Mean-field motion is clockwise around one of these orbits.

In the limit G → 0, the mean-field cycles move along elliptical orbits with frequency√
σμ. This frequency provides a natural time scale for the problem which allows a reduction

of the number of parameters from the three original reaction rates to two. It is convenient to
choose the parameters as

N =
√

μσ

λ
= √

N1N2; ε =
√

σ

μ
=

√
N2

N1
. (5)

Here, N represents the effective system size, while ε represents the asymmetry between the
predator and prey populations at the mean-field fixed point. We are interested in studying
the system in the limit that N � 1. For reasons explained in Sect. 4, ε will be restricted to
values such that N−1/2 < ε < N1/2.

3 Stochastic Simulation

Modeling the system deterministically fails to take into account the intrinsic stochasticity
associated with individual birth/death events. The inclusion of these fluctuations leads to a
qualitative change in the behavior of this model. This failure of the mean-field modeling can
be seen in the results from Monte Carlo simulation.

Stochastic simulations were run using the Gillespie algorithm [13] until one of the pop-
ulations went extinct. In such a simulation q1 and q2 are taken to be strictly discrete. Births
and deaths occur one at a time at a probability calculated based on the reaction rates and
current populations sizes. Unless otherwise noted, the initial conditions were taken to be at
the coexistence fixed point. An example of such a simulation is shown in Fig. 2. Although
the clockwise-rotation that was present in the mean-field case is still observed, there is now
a slow diffusion toward larger orbits. Eventually the system hits either the q1 or q2 axis and

Fig. 2 Typical run of the
stochastic simulation of the
model (2) for N = 100 and ε = 1
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Fig. 3 Differential extinction
time calculated from 105

simulations (N = 100, ε = 1).
Time is in units of 1/

√
σμ

Fig. 4 Dependence of tM on N

for ε = 1

from there rapidly moves to one of the extinct absorbing states. For a typical simulation,
there are many cycles around the mean-field fixed point before an extinction event.

For a given set of initial conditions, it is possible to determine the probability of the
system being extinct at a given time by repeatedly running a stochastic trial. Using these
extinction times, the differential extinction probability, dPext/dt , can be plotted. Figure 3
presents the result of 100,000 trials using the conditions of the simulation presented in Fig. 2.
The inevitability of extinction leads to the condition

∫ ∞

0

dPext

dt
dt = 1. (6)

As could be expected, at both long and short times extinction events are unlikely.
Since such a simulation invariably ends in the extinction of one or both species, it is

interesting to analyze the mean time before a given system goes extinct, tM , given by

tM = 〈text 〉 =
∫ ∞

0
dtt

dPext

dt
. (7)

Figure 4 shows the dependence of tM on N . One observes a linear growth of the characteris-
tic time tM with increasing N at N � 1. This agrees with the results observed by Reichen-
bach et al. [14] for the cyclic Lotka-Volterra system. This linear dependence suggests the



206 M. Parker, A. Kamenev

Fig. 5 Differential extinction
time calculated from 105

simulations for ε = 2 and
ε = 1/2; N = 100

Fig. 6 Plot of ln τ vs. ln ε;
N = 100

following form for tM(N, ε) in the limit N � 1:

tM(N, ε) = Nτ(ε), (8)

where the rescaled mean extinction time, τ(ε), depends only on ε but not on the character-
istic system size, N . The fit of Fig. 4 gives an observed value of τ(1) = 0.84.

We now focus on the asymmetry parameter, ε. Figure 5 plots the extinction probabilities
versus time for ε = 2 and ε = 1/2. The two models show virtually identical behavior. This
similarity suggests a symmetry in τ between ε and 1/ε. This is confirmed by Fig. 6 which
plots ln τ vs. ln ε observed from stochastic simulation, giving

τ(ε) = τ(1/ε). (9)

The maximum of τ corresponds to ε = 1. At ε far away from unity, a linear dependence in
Fig. 6 with slope of ±1.9 is observed. The closeness of this slope to 2 suggests that the high
ε behavior is approximately given by τ(ε) ∝ (max{ε,1/ε})−2.
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4 Analytic Approach

4.1 Master and Fokker-Planck Equations

The full behavior of the reaction model (2) can be analyzed by employing a probability
distribution and studying its dynamics. Define P (m,n; t) to be the probability of the system
having m predators and n prey at time t , where m and n are both non-negative integers. This
yields the following master equation

∂tP (m,n; t) = σ [(m + 1)P (m + 1, n) − mP(m,n)] + μ[(n − 1)P (m,n − 1) − nP (m,n)]
+ λ[(m − 1)(n + 1)P (m − 1, n + 1) − mnP(m,n)].

It is possible to reformulate this master equation using a Fokker-Planck equation and
further to reduce this two-dimensional Fokker-Planck equation to one dimension by using
an inherent separation of time scales. The methods used were previously presented [11] and
will only be highlighted here. Of particular importance is the distinction between systems
with marginally stable cycles such as this one and those with stable limiting cycles or an
attracting fixed point [15, 16]. In the former case, large fluctuations (such as extinctions)
may proceed in a sequence of small steps. A small fluctuation leads to a mean-field like
evolution along a new stable orbit until another small fluctuation shifts the orbits again. This
implies that the gradients ∂m,n may be considered small ∼ 1/N which is not usually the
case [17–22], and thus the master equation may be approximated as a Fokker-Planck (FP)
equation which is justified by the Van-Kampen expansion over the system size N [23]. This
approximation gives

∂tP = σ

[
∂q1 + 1

2
∂2

q1

]
q1P + μ

[
−∂q2 + 1

2
∂2

q2

]
q2P

+ λ

[
∂q2 + 1

2
∂2

q2
− ∂q1 + 1

2
∂2

q1
− ∂q1∂q2

]
q1q2P, (10)

where q1 is the number of predators and q2 is the number of prey.
It is convenient to make the following variable transformation

q1 = μ

λ
e
√

σ
μ Q1 , q2 = σ

λ
e
√

μ
σ Q2 . (11)

In these coordinates, predator extinction occurs at Q1 = −∞, and prey extinction occurs
at Q2 = −∞. The mean-field coexistence fixed point is now at the origin. As part of the
transformation, time has been transformed to be measured in the problem’s natural units,
and the three reaction rates (μ, σ , and λ) have been reduced to two parameters, N and ε.
Perhaps the most important result of the transformation is that the mean-field equations of
motion acquire the Hamiltonian structure, where Q1 and Q2 form a canonical pair

Q̇1 = −1 + eQ2/ε = ∂Q2G;
Q̇2 = 1 − eεQ1 = −∂Q1G,

(12)

with the Hamiltonian being the mean-field integral of motion, G

G = 1

ε
(eεQ1 − 1) − Q1 + ε(eQ2/ε − 1) − Q2. (13)
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Fig. 7 Orbits of constant G in
the new coordinates. Larger
orbits correspond to larger values
of G

As previously mentioned, G provides a natural radial coordinate. A system at the mean-
field fixed point has G = 0 while an extinct system corresponds to G = ∞. Figure 7
shows mean-field orbits in the transformed coordinate system. A new probability distrib-
ution W(Q1,Q2; t) is defined so as to include the Jacobian of the transformation

W(Q1,Q2; t) = q1q2P (q1, q2; t), (14)

where q1 and q2 are substituted from (11). In these coordinates, the Fokker-Plank equa-
tion (10) can be represented as

∂tW = −
∇ ·
( 
JMF + 
JD

)
, (15)

where the divergence is defined as


∇ = (∂Q1 , ∂Q2). (16)

The probability current in (15) has been broken into two parts. The first, 
JMF , is responsible
for the mean-field rotation along contours of constant G, see (12). The second part of the
current, 
JD , drives the radial diffusion of the system. The mean-field current is given by

J MF
1 = (−1 + eQ2/ε)W = (∂Q2G)W ;

J MF
2 = (1 − eεQ1)W = −(∂Q1G)W.

(17)

The diffusive current is found from (10) as

J D
1 = − 1

2N

[
(e−εQ1 + e

Q2
ε −εQ1)∂Q1W − ∂Q2W

]
;

J D
2 = − 1

2N

[
(e− Q2

ε + eεQ1− Q2
ε )∂Q2W − ∂Q1W

]
.

(18)



Mean Extinction Time in Predator-Prey Model 209

In particular, the diffusive current is suppressed by a factor of N relative to the mean-field
current. Thus for a sufficiently large system (N � 1) the angular motion should be far faster
than the radial diffusion.

4.2 Reduction to One Dimension

The mean-field constant, G, provides a natural radial coordinate. As mentioned, the corre-
sponding angular motion is much faster. Using this time-scale separation, the two dimen-
sional Fokker-Planck equation can be reduced to one dimension. Since Q1 and Q2 form a
canonical pair of the mean-field system, it is possible to transform them into action-angle
variables (I,α), where the action is an integral of the mean-field motion, i.e. G = G(I). It
is more convenient to use the parameter G instead of the canonical action, I , as the radial
variable.

Since the angular motion is far faster than the radial motion, we shall assume that the
probability distribution W(G,α; t) should rapidly equilibrate in the α direction and at long
time scales should depend on G only. The probability distribution can then be represented as
W(G,α) = W(G), and it is possible to remove the angular dependence of (15) by averaging
the radial component of the current around a mean-field orbit. The transformation from
(Q1,Q2) to (G) involves a Jacobian. This Jacobian, T (G), is calculated to be the period of
the mean-field orbit parameterized by G. The resulting Fokker-Planck equation is

T (G)∂tW(G) = ∂

∂G

[
−

∮

G

( 
JMF + 
JD
)

· n̂dl

]
, (19)

where n̂ is a unit vector perpendicular to the line of constant G, and the integration is around
a constant G contour. The mean-field current is perpendicular to n̂ and thus makes no con-
tribution to the integral


JMF · n̂ = 0. (20)

The integration is then only over the diffusive current, 
JD . This current is first order in
both derivatives and proportional to 1/N . Since we have assumed that there is no angular
dependence to the probability distribution, the integral around the orbit may be written as

−
∮

G


JD · n̂dl = 1

N
D(G)

∂W

∂G
, (21)

which is in essence the definition of the effective diffusion parameter, D(G). The resulting
FP equation takes the form

T (G)∂tW(G, t) = ∂

∂G

[
1

N
D(G)

∂W(G, t)

∂G

]
, (22)

where the two functions D(G) and T (G) may be evaluated for any mean-field orbit G. Both
of these function depend on ε but are independent of the system size, N . We evaluate both
of these quantities in the Appendix.

The probability distribution, W(G, t), should be rescaled by the Jacobian of the transfor-
mation, T (G), in order to preserve its total integral:

W̃ (G, t) = T (G)W(G, t). (23)
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This changes (22) into

∂t W̃ (G, t) = ∂

∂G

[
1

N
D(G)

∂

∂G

(
W̃ (G, t)

T (G)

)]
. (24)

Since the system is incapable of moving from an extinct state to a living one, there is an
absorbing boundary condition as G → ∞. Since G is a radial coordinate, the current must
disappear at G = 0. This gives boundary conditions of

lim
G→∞

W̃ (G, t) = 0;

G
∂W̃(G, t)

∂G

∣∣∣∣
G=0

= 0,

(25)

where we have employed D(G) ∼ G at G → 0.

4.3 Reduction to the Finite Interval

Since G is formulated on an infinite interval, it is convenient to make a change to a new
variable, x, such that

x =
∫ G

0

√
T (G′)
D(G′)

dG′. (26)

Since D(G) grows exponentially as G → ∞ this integral is bounded. We denote this con-
vergent value as x0:

x0 =
∫ ∞

0

√
T (G′)
D(G′)

dG′. (27)

For the case ε = 1, x(G) is plotted in Fig. 8. As G → ∞, x converges to x0 = 2.39.
The Jacobian determinant of this transform gives a rescaled probability density of

√
T (x)

D(x)
p(x, t) = W̃ (G, t), (28)

Fig. 8 x(G) for ε = 1. At
G → ∞ the function converges
to x0 = 2.39
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Fig. 9 Numerically calculated
V (x) for ε = 1. The function
diverges as ln(x0 − x) at
x = x0 = 2.39

which results in a Fokker-Planck equation of

∂tp(x, t) = 1

N

∂

∂x

[√
D(x)T (x)

∂

∂x

(
p(x, t)√
D(x)T (x)

)]
. (29)

This equation is defined on the finite interval x ∈ [0, x0]. The boundary conditions (25) take
the form

p(x0; t) = 0; x
∂

∂x

(
p(x; t)

x

)∣∣∣∣
x=0

= 0, (30)

where we take into account that
√

D(x)T (x) ∼ x at x → 0. Equation (29) no longer depends
on T and D independently, but rather only on

√
T D as well as the constant x0. For brevity,

we define h(x) as

h(x) = √
T (x)D(x). (31)

This changes the Fokker-Planck equation (29) into

∂tp(x, t) = 1

N

∂

∂x

[
h(x)

∂

∂x

(
p(x, t)

h(x)

)]
. (32)

This equation can be written in a more physically intuitive way:

∂tp(x, t) = 1

N

∂

∂x

[
p(x, t)

∂

∂x
(− lnh(x)) + ∂

∂x
p(x, t)

]
. (33)

This is simply the equation for constant diffusion in a potential, V (x) = − lnh(x). A plot
of this potential for ε = 1 is shown in Fig. 9. The two forms are equivalent, but (32) is more
simple to work with and will be used for the remainder of the paper.

4.4 Mean Extinction Time

The mean extinction time, tM , can be determined using the reverse Fokker-Planck equation.
If we define the conditional probability of the system being in the state (x, t) after starting
in initial conditions (y, t ′) as p(x, t |y, t ′), the Fokker-Planck equation (32) becomes

∂tp(x, t |y, t ′) = 1

N
∂x

(
h(x)∂x

p(x, t |y, t ′))
h(x)

)
. (34)
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Since the only route out of the interval (0, x0) is the absorbing boundary at x0, if a particle
is in this interval it means it has never left. The mean extinction time is then equivalent to the
mean first passage time, i.e. the mean time it takes for a system to reach x = x0 for the first
time. The method for calculating the mean first passage time from the reverse Fokker-Planck
equation is outlined by Gardiner [24]. The mean extinction time is then given by

tM(x) = 〈text 〉 = −
∫ ∞

0
dtt

d

dt

(∫ x0

0
dx ′p(x ′, t |x,0)

)
, (35)

where x = x(G) is the initial position at t = 0. This mean extinction time must obey the
following differential equation

1

N

1

h(x)
∂x (h(x)∂xtM(x)) = −1. (36)

Like G, x is a radial coordinate, so the current at x = 0 must be zero. Since there is an
absorbing boundary at x0, the boundary conditions are given by

tM(x0) = 0;
lim
x→0

x∂xtM(x) = 0.
(37)

The solution to (36) with these boundary conditions is given by

tM(x) = N

∫ x0

x

dy

h(y)

∫ y

0
h(z)dz. (38)

We are first interested in the mean-extinction time for a system starting at the mean-field
fixed point: tM = tM(0).

Using the T (G) and D(G) behavior calculated in the Appendix and the definition of
x (26), tM can be calculated by numerical integration of (38). For the case of ε = 1, this
gives

tM(ε = 1) = 0.87N. (39)

This should be compared with the mean-extinction time from stochastic simulation. Using
the slope of the fit of Fig. 4, for ε = 1 we have

tM = 0.84N. (40)

The discrepancy between these two values can be partially explained by taking into account
the finite size effect. For a finite size system, it is not necessary to diffuse all the way to
G = ∞ but only to a value of G that corresponds to a single individual remaining in one of
the two populations. At this point, fluctuations will kill the system with probability close to
one. This cutoff, Gext , may be estimated using (4) as

Gext =
{

ε−1(ln(N/ε) − 1); ε > 1,

ε(ln(Nε) − 1); ε < 1.
(41)

For simulations with N = 100 and ε = 1 this gives Gext = 3.62. Integrating (26) only to Gext

gives x0 = 2.08 (instead of x0 = 2.39 for an infinite system). Similarly using this truncated
x0 as the upper integration bound in (38) gives tM = 0.79N . There is only a logarithmic
dependence of Gext on N , so eliminating this effect from simulations is difficult.
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4.5 Highly Asymmetric Case

Since h(x) and x0 are independent of N , (38) immediately shows the observed linear de-
pendence of tM on N . We now wish to understand the dependence of tM on ε in the highly
asymmetric case, that is ε � 1 or ε � 1. The case of ε � 1 is presented here; the other case
can be examined following the same line of reasoning. We first investigate the scaling of
x0 = x0(ε).

In the asymmetric case, the integrand of (27) is exponentially suppressed when the high
G limit of T (G) becomes relevant, so T (G) can be approximated as a constant. In the high
ε limit, D(G) depends only on εG and not on G independently. This can be understood
as a consequence of the strong dependence of the stochastic noise on the population size.
For ε � 1, the predator population reaches far smaller populations on a given mean-field
trajectory than the prey species. The stochastic noise is thus exponentially greater in the
Q1 direction than the Q2 and can be approximated as being only in this direction. After
averaging over a mean-field cycle, the result is a dependence of D(G) purely on D(εG).
A simple rescaling of the integration variable in (27) results in the following form for x0:

x0 = α

ε
, ε � 1, (42)

where α is an ε and N independent constant. Using this calculation of x0, it is possible
to make a high ε estimation of tM . A similar rescaling of the integration variables in (38)
results in the following form of tM in the large ε limit:

tM = β
N

ε2
, ε � 1, (43)

where like α, β is a constant that is independent of both N and ε. For ε � 1, an analogous
argument can be made, where the majority of the effects of stochastic noise are a result of
Q2 fluctuations instead of Q1. The results are the same with ε → ε−1. This gives x0 = αε

and tM = βε2N .
The constants α and β can be calculated from numerical integration of (38) giving

α = 3.1,

β = 1.6.
(44)

Fig. 10 Comparison of analytic
and stochastic values of τ . The
lines represented the calculated
asymptotes for high and low ε
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Figure 10 shows the results of analytic calculation for the mean extinction time compared
to the results obtained from Monte Carlo simulation. The lines show the asymptotes calcu-
lated in the small and large ε limits. We observe good agreement between numerics and
analytics. The close convergence to asymptotic calculation confirms that the mean extinc-
tion time scales as tM ∝ N(max{ε,1/ε})−2. This is in agreement with what was observed in
Fig. 6. Since we have relied on the separation of time scales between the angular and radial
motion, it is required that there are many rotational cycles before the system goes extinct,
i.e. N > 1. This restricts ε to the interval N−1/2 < ε < N1/2.

5 Discussion

We have investigated the mean extinction time in a Lotka-Volterra (2) system with intrinsic
demographic stochasticity. Specifically, we have calculated the mean time it takes such a
system to go extinct analytically and compared it with the results obtained through Monte
Carlo simulations. The results showed good agreement between these values.

We consider first the asymmetric case. Recalling the definition of the parameters, (5),
and employing (43) one finds

tM = β
N

3/2
S

N
1/2
L

, (45)

where NL = max{N1,N2} is the size of the larger population, NS = min{N1,N2} is the size
of the smaller population, and time is measured in the natural units which is the inverse fre-
quency of the small cycles 1/

√
σμ. Analytic results give β = 1.6; the results of Monte-Carlo

simulation are β = 1.5. This scaling relation is in agreement with results found previously
for short and long-lived systems [11]. Counterintuitively, this relation predicts, for example,
that the mean extinction time decreases as the larger population size increases. In fact, both
populations can be increased without changing the behavior of the extinction time so long
as (45) remains unchanged. To check this we performed Monte-Carlo simulations of two
prey-dominated models which ought to go extinct in the same relative time. The results are
presented in Fig. 11. We require that the angular motion be faster than the radial. Therefore,
(45) may be trusted only if tM > 1, i.e. NL > NS > N

1/3
L . Outside of this interval the system

will typically go extinct without completing a single rotation.
We now consider the symmetric case, NL = NS = N � 1. We find that

tM = 0.87N → 0.87

λ
, (46)

Fig. 11 Extinction probability of
the two models: crosses
N = 1000, ε = 5; triangles
N = 4000, ε = 10. In both cases
tM ≈ 70
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Fig. 12 Comparison of
numerical integration of (38) (full
line) and Monte Carlo values
(crosses) of τ for varying initial
values of G. The analytic
calculation in the high and low G

limits is also shown. (ε = 1)

where the first result is in the relative time scale, while the second is in the absolute one.
The linear scaling with the system size, N , agrees with results of Reichenbach et al. [14],
obtained for a closely related cyclic model. The fact that the mean extinction time in the
symmetric case is close to a half relative to the asymmetric case, (45), can be understood
as follows. In the asymmetric case, the current pushing toward the extinction of the larger
population is exponentially suppressed relative to the current pushing toward the extinction
of the smaller and can be neglected. In the symmetric case, both of these currents are exactly
the same making the extinction time twice shorter.

Further investigation can be conducted by relaxing the condition that the system begins
at the mean-field fixed point. Under such a condition, the initial G will no longer be zero
but begin at some positive value. Since G = ∞ is the condition for extinction, this means
that the system will be closer to death, and the mean extinction time should be smaller.
Although there is some ambiguity in the choice of initial (q1, q2) for non-zero G, since the
angular motion is much faster than the radial, the effect of the choice should not affect the
extinction time to leading order. The results of stochastic trials at varying G and the results
of numerically integrating (38) are shown in Fig. 12 for ε = 1. The small G behavior is
exactly calculable and gives tM(G) = tM(0) − NG/(ε + 1/ε). Of more interest is the high
G behavior of tM(G). In this limit, tM(G) ∝ Ge−G. This means that at high values of G, the
system will rapidly go extinct. Alternatively, a system that is still “alive” is very likely to
still be at relatively small G. Thus for a typical trial beginning near G = 0, the system will
remain at relatively small G for the bulk of its time prior to extinction.
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2008075.

Appendix: Evaluation of D(G) and T (G)

In the limit G � min{ε,1/ε}, an orbit of constant G is an ellipse. Both parameters, D(G)

and T (G), may be found exactly in this case

D(G) = 2πG(ε + 1/ε); T (G) = 2π. (47)
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Equation (22) takes the form

∂tW = ε + 1/ε

N

∂

∂G

[
G

∂W

∂G

]
. (48)

Changing variables as G = R2 near the mean-field fixed point gives the radial part of the
two-dimensional diffusion equation with diffusion constant of (ε + 1/ε)/4N

∂tW = ε + 1/ε

4N

1

R

∂

∂R

(
R

∂W

∂R

)
. (49)

The large G limit can also be estimated. The diffusive current 
JD · n̂ has two maxima
corresponding to the minima in one of the two species populations. These maxima are lo-
cated at Q2 = 0, Q1 ≈ −G − 1/ε and Q1 = 0, Q2 ≈ −G − ε. Expanding the currents (18)
near these two points and evaluating the integral in (21) one finds

D(G) =
√

π

2

(

e +
(

1 + 1

ε2

)1/2+ε2)

eεG +
√

π

2

(
e + (1 + ε2)1/2+1/ε2

)
eG/ε. (50)

The majority of the orbital period is spent in the third quadrant. In this quadrant, Q̇1 ≈ −1
and Q1 varies from ≈ −G to 0. This gives for the orbital period

T (G) = G. (51)

Calculations using T (G) and D(G) were done using interpolating functions that are valid
in both the high and low G limits.
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